Supplementary material for the paper: Asymptotic velocities in quantum and Bohmian mechanics, by Bruno Galvan

July 20, 2017

In this document an example is given of a relativistic trajectory space which is not asymptotically regular but nevertheless $S_t \to S_\infty$ for $t \to \infty$, and it is shown that gS_t does not converge to gS_∞ , where $gS_t := gP_t \circ \eta_t|_{g\mathbb{B}_A}^{-1}$ and $gS_\infty(V) := S_\infty(g^{-1}V)$.

Let us define first the trajectory

$$\mathbf{k}_{\varphi}(t) := R(\hat{\mathbf{n}}, \ln \omega t) \mathbf{v}_{\varphi} t := \mathbf{v}_{\varphi}(t) t,$$

where $\hat{\mathbf{n}} = (0, 0, 1)$, $\mathbf{v}_{\varphi} = v(\cos \varphi, \sin \varphi, 0)$, with $0 < v < 1/\sqrt{2}$. By continuity we can define $\mathbf{k}_{\varphi}(0) := 0$. For simplicity, in this document all the trajectories will be considered as defined on \mathbb{R}^+ instead of \mathbb{R} . Note that

$$\mathbf{v}_{\varphi}(t) = v(\cos(\varphi + \ln \omega t), \sin(\varphi + \ln \omega t), 0).$$

The logarithm has been introduced in order to guarantee that \mathbf{k}_{φ} is a world line; in fact the instantaneous velocity of \mathbf{k}_{φ} is

$$\mathbf{k}_{\varphi}(t) = \hat{\mathbf{n}} \wedge \mathbf{v}_{\varphi}(t) + \mathbf{v}_{\varphi}(t),$$

so that

$$\|\dot{\mathbf{k}}_{\varphi}(t)\|^{2} \leq 2\|\mathbf{v}_{\varphi}(t)\|^{2} < 1.$$

The trajectory \mathbf{k}_{φ} does not admit asymptotic velocity because $\eta_t(\mathbf{k}_{\varphi}) = \mathbf{v}_{\varphi}(t)$.

Let us consider now the trajectory space composed of the set of trajectories

$$\mathbb{B} := \{ (\mathbf{k}_{\varphi}, \mathbf{k}_{\varphi+\pi}) : \varphi \in [0, 2\pi) \}, \tag{1}$$

endowed with the measure induced by the normalized Lebesgue measure on $[0, 2\pi)$. The support of the measure S_t is the set

$$\eta_t(\mathbb{B}) = \{ (v \cos(\varphi + \ln \omega t), v \sin(\varphi + \ln \omega t), 0, -v \cos(\varphi + \ln \omega t), -v \sin(\varphi + \ln \omega t), 0) : : \varphi \in [0, 2\pi) \}$$

or equivalently

$$\eta_t(\mathbb{B}) = \{ (v\cos\varphi, v\sin\varphi, 0, -v\cos\varphi, -v\sin\varphi, 0) : \varphi \in [0, 2\pi) \}.$$
(2)

One can easily see that S_t is the uniform (Lebesgue) measure concentrated on $\eta_t(\mathbb{B})$, as in the example at the end of the section 2 of the paper. The measure S_t is therefore independent of time and $S_t \to S_{\infty} = S_t$ for $t \to \infty$. Of course the support of S_{∞} is the set (2); if g is a boost of velocity u < 1 along the x-axis, the support of gS_{∞} is therefore the set

$$g\eta_{+}(\mathbb{B}) = \left\{ \left(\frac{v\cos\varphi - u}{1 - uv\cos\varphi}, \frac{v\sin\varphi}{\gamma(1 - uv\cos\varphi)}, 0, \frac{-v\cos\varphi - u}{1 + uv\cos\varphi}, \frac{-v\sin\varphi}{\gamma(1 + uv\cos\varphi)}, 0 \right) : \varphi \in [0, 2\pi) \right\}.$$
(3)

We will study now the support of the measure $gS_t = gP \circ \eta_+|_{g\mathbb{B}}^{-1}$, and we will show that, if the measure converges for $t \to \infty$, the support of its limit cannot be (3), and therefore $\lim_{t\to\infty} gS_t \neq gS_{\infty}$.

First of all let us study how does \mathbf{k}_{φ} transform. The graph of \mathbf{k}_{φ} is

$$\overline{\mathbf{k}}_{\varphi} = \{(1, v\cos(\varphi + \ln \omega t), v\sin(\varphi + \ln \omega t), 0)t : t > 0\},\$$

By defining $\theta := \ln \omega t$ we can write

$$\overline{\mathbf{k}}_{\varphi} = \{(1, v \cos(\varphi + \theta), v \sin(\varphi + \theta), 0)e^{\theta} / \omega : \theta \in \mathbb{R}\}.$$

The transformed graph is:

$$g\overline{\mathbf{k}}_{\varphi} = \{(\gamma[1 - uv\cos(\varphi + \theta)], \gamma[v\cos(\varphi + \theta) - u], v\sin(\varphi + \theta), 0)e^{\theta}/\omega : \theta \in \mathbb{R}\}.$$

Let

$$\tilde{s}(\varphi, \theta) := \frac{e^{\theta}\gamma}{\omega} [1 - uv\cos(\varphi + \theta)].$$

Note that $\tilde{s}(\varphi, \theta) \to 0$ for $\theta \to -\infty$ and $\tilde{s}(\varphi, \theta) \to \infty$ for $\theta \to \infty$. Note moreover that

$$\tilde{s}(\varphi, \theta + 2n\pi) = e^{2n\pi} \tilde{s}(\varphi, \theta) \text{ for } n = 1, 2, \dots$$
 (4)

The θ -derivative of $\tilde{s}(\varphi, \theta)$ is greater than 0:

$$\partial_{\theta}\tilde{s}(\varphi,\theta) = \frac{e^{\theta}\gamma}{\omega} [1 - uv\cos(\varphi + \theta)] + \frac{e^{\theta}\gamma}{\omega} uv\sin(\varphi + \theta) = \frac{e^{\theta}\gamma}{\omega} \{1 + uv[\sin(\varphi + \theta) - \cos(\varphi + \theta)]\} > 0$$

because $uv < 1/\sqrt{2}$ and $\sin \theta - \cos \theta \ge -2/\sqrt{2}$. The function $\tilde{s}(\varphi, \cdot)$ is therefore invertible, and let $\tilde{\theta}(\varphi, \cdot) := \tilde{s}^{-1}(\varphi, \cdot)$; note that $\tilde{\theta}(\varphi, \cdot)$ is increasing in the interval $(0, \infty)$, with $\lim_{s\to 0} \tilde{\theta}(\varphi, s) = -\infty$ and $\lim_{s\to\infty} \tilde{\theta}(\varphi, s) = \infty$. Moreover, from the equality (4) one easily deduces the equality

$$\tilde{\theta}(\varphi, s) + 2n\pi = \tilde{\theta}(\varphi, se^{2n\pi}) \text{ for } n = 1, 2, \dots$$
 (5)

that will be utilized later. We can therefore write

$$g\overline{\mathbf{k}}_{\varphi} = \{(\gamma[1-uv\cos(\varphi+\tilde{\theta}(\varphi,s))], \gamma[v\cos(\varphi+\tilde{\theta}(\varphi,s))-u], v\sin(\varphi+\tilde{\theta}(\varphi,s)), 0)e^{\tilde{\theta}(\varphi,s)}/\omega : s > 0\}$$

Since, by definition,

$$s = \frac{e^{\theta(\varphi,s)}\gamma}{\omega} [1 - uv\cos(\varphi + \tilde{\theta}(\varphi,s))],$$

we can also write

$$g\overline{\mathbf{k}}_{\varphi} = \left\{ \left(1, \frac{v\cos(\varphi + \tilde{\theta}(\varphi, s)) - u}{1 - uv\cos(\varphi + \tilde{\theta}(\varphi, s))}, \frac{v\sin(\varphi + \tilde{\theta}(\varphi, s))}{\gamma[1 - uv\cos(\varphi + \tilde{\theta}(\varphi, s))]}, 0 \right) s : s > 0 \right\},\$$

and therefore the transformed trajectory $g\mathbf{k}_{\varphi}$ is

$$g\mathbf{k}_{\varphi}(s) = \left(\frac{v\cos(\varphi + \tilde{\theta}(\varphi, s)) - u}{1 - uv\cos(\varphi + \tilde{\theta}(\varphi, s))}, \frac{v\sin(\varphi + \tilde{\theta}(\varphi, s))}{\gamma[1 - uv\cos(\varphi + \tilde{\theta}(\varphi, s))]}, 0\right)s.$$

Let us study now the set $g\mathbb{B}$, where \mathbb{B} is defined by definition (1). We have:

$$\eta_s(g\mathbb{B}) = \Big\{ \Big(\frac{v\cos(\varphi + \tilde{\theta}(\varphi, s)) - u}{1 - uv\cos(\varphi + \tilde{\theta}(\varphi, s))}, \frac{v\sin(\varphi + \tilde{\theta}(\varphi, s))}{\gamma[1 - uv\cos(\varphi + \tilde{\theta}(\varphi, s))]}, 0, \\ \frac{-v\cos(\varphi + \tilde{\theta}(\varphi + \pi, s)) - u}{1 + uv\cos(\varphi + \tilde{\theta}(\varphi + \pi, s))}, \frac{-v\sin(\varphi + \tilde{\theta}(\varphi + \pi, s))}{\gamma[1 + uv\cos(\varphi + \tilde{\theta}(\varphi + \pi, s))]}, 0 \Big) : \varphi \in [0, 2\pi) \Big\}.$$

Now, suppose that $\tilde{\theta}(\varphi, s_0) \neq \tilde{\theta}(\varphi + \pi, s_0)$ for some φ and s_0 ; then the set $\eta_{s_0}(g\mathbb{B})$, which is the support of gS_{s_0} , is different from the set (3), which is the support of gS_{∞} , and therefore $gS_{s_0} \neq gS_{\infty}$. From the equality (5) one deduces that $\eta_{s_0}(g\mathbb{B}) = \eta_{s_n}(g\mathbb{B})$ for $n = 1, 2, \ldots$, where $s_n := se^{2n\pi}$. As a consequence if S_s converges for $s \to \infty$ its limit cannot be gS_{∞} .

In order to prove the thesis, we have still to prove that there exists some φ and s_0 such that $\tilde{\theta}(\varphi, s_0) \neq \tilde{\theta}(\varphi + \pi, s_0)$. This is trivial: chose φ and θ such that $\varphi + \theta \neq (2n+1)\pi/2$, and define $s_0 := \gamma e^{\theta} [1 - uv \cos(\varphi + \theta)]$. This implies that $\tilde{\theta}(\varphi, s_0) = \theta$; suppose that $\tilde{\theta}(\varphi, s_0) = \theta$ as well; this implies in turn that

$$\frac{\gamma e^{\theta}}{\omega} [1 - uv\cos(\varphi + \theta)] = s_0 = \frac{\gamma e^{\theta}}{\omega} [1 - uv\cos(\varphi + \pi + \theta)],$$

which is impossible if $uv \neq 0$.