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In this document an example is given of a relativistic trajectory space which is not
asymptotically regular but nevertheless S; — S, for t — oo, and it is shown that ¢.S;
does not converge to ¢S, where ¢S; := gP; o Wt|;1§A and ¢S (V) := Sx(g7'V).

Let us define first the trajectory

k,(t) := R(n,Inwt)v,t := v,(t)t,

where fi = (0,0, 1), v, = v(cos,sing,0), with 0 < v < 1/v/2. By continuity we can
define k,(0) := 0. For simplicity, in this document all the trajectories will be considered
as defined on R* instead of R. Note that

v, (t) = v(cos(yp + Inwt),sin(p + Inwt), 0).

The logarithm has been introduced in order to guarantee that k, is a world line; in fact
the instantaneous velocity of k,, is

ko(t) = D AV(1) +v,(1),

so that .
Ik, (0)[1* < 2|lvi,(£)]* < 1.

The trajectory k, does not admit asymptotic velocity because n;(k,) = v, (t).
Let us consider now the trajectory space composed of the set of trajectories

B i= {(ky kpir) : ¢ € [0,2)), (1)

endowed with the measure induced by the normalized Lebesgue measure on [0,27). The
support of the measure S; is the set

m(B) = {
(veos(p + Inwt), vsin(e + Inwt), 0, —v cos(¢ + Inwt), —vsin(¢ + Inwt), 0) :

cp€l0,2m)}



or equivalently
n(B) = {(vcos,vsiny, 0, —v cos g, —vsinp,0) : ¢ € [0,27)}. (2)

One can easily see that S; is the uniform (Lebesgue) measure concentrated on 7,(B), as
in the example at the end of the section 2 of the paper. The measure S; is therefore
independent of time and S; — Sy = S5; for t — o0o. Of course the support of Sy, is the
set (2); if g is a boost of velocity u < 1 along the x-axis, the support of ¢S, is therefore
the set

VCOS Y — U v sin ¢ —VCOSp — U —vsing
B) — , 0, , 0):pelo,2
g1+(B) {(1—uvcosg0 Y1 —uvcosp) " 1+uvcosp (1 + uvcosp) > el W)}
(3)

We will study now the support of the measure ¢S; = gP o 77+\g’]§, and we will show that,
if the measure converges for ¢ — oo, the support of its limit cannot be (3), and therefore
First of all let us study how does k,, transform. The graph of k,, is

k, = {(1,vcos(p + Inwt),vsin(p + Inwt),0)t : t > 0},
By defining 0 := In wt we can write
k, = {(1,vcos(¢ + 0),vsin(p +0),0)e’ Jw : 6 € R}.
The transformed graph is:
gk, = {(7[1 — wvcos(¢ + 0)],7[vcos(¢ + 8) — u],vsin(p + 0),0)e’ Jw : 0 € R}.

Let

efy
5(p,0) ;= —[1 — uv cos(p + 0)].

w

Note that 5(¢,0) — 0 for § — —oo and 5(¢, ) — oo for § — co. Note moreover that

5(¢,0 + 2nm) = *5(p, 0) forn =1,2,.... (4)

The 6-derivative of 5(¢p, #) is greater than 0:

- e’y ey e’y .
Op5(p, 0) = 7[1—7,“1 cos(go—l—@)]%—;uv sin(p+6) = 7{1—|—uv[sm(g0+9)—cos(go—l—@)]} >0

because uv < 1/v/2 and sin § —cos § > —2/+/2. The function 5(¢, -) is therefore invertible,
and let 0(p,:) == 5 '(p,-); note that A(yp,-) is increasing in the interval (0, 00), with
lim,_,o é(gp, s) = —oo and lim_, o, é(gp, s) = oo. Moreover, from the equality (4) one easily
deduces the equality

0(p,s) + 2nm = (g, se"™) forn = 1,2, .. .. (5)



that will be utilized later. We can therefore write

ng ={(v[1—uv cos(<p+§(<p, s, v cos(go—i—é(go, s))—u],vsin(gp—i—é(tp, s)), O)eé(“"’s)/w s> 0}.

Since, by definition, ]
69(@075)7 -
[1 — uvcos(p + 6(p, 5))],

we can also write

gk, — { (1 veos(p + 0(p, s)) — u vsin(p 4 0(p, s)) ’0) o se 0} |

1 —uvcos(p + (g, 5) L —uvcos(p + 0(p, 5))]

and therefore the transformed trajectory gk, is

v 1 —uwvcos(p + 0(p, s))’ Y[1 — wvcos(p + 0(p, s))] ’

Let us study now the set gB, where B is defined by definition (1). We have:

[ (vcos(p+ 0(p,s)) —u vsin(p + 0(p, s))
ns(9B) = {<~1 — uwv cos(p + é((p, s)) ’ ~y[1 — u? cos(p + é((p, 3))}7
—vcos(g0+9(<,0:|—7r, s)) —u —vsin(<,0+€(<,0~+ T,s)) 0) oel0 27?)}.
14 uvcos(p + 0(¢ +m,5))  y[1 +uvcos(p + O(p + 7, 5))] 7

b

Now, suppose that 6(p, s) # 0(p + 7, 50) for some @ and so; then the set 7, (gB), which
is the support of ¢S;,, is different from the set (3), which is the support of ¢S, and
therefore ¢S5, # 9S~. From the equality (5) one deduces that ns,(¢B) = ns,(gB) for
n = 1,2,..., where s, := se?"™. As a consequence if S, converges for s — oo its limit
cannot be gS.

In order to prove the thesis, we have still to prove that there exists some ¢ and sy such
that (¢, s9) # 0(¢ + m, s0). This is trivial: chose ¢ and 0 such that ¢ +60 # (2n+ 1)7/2,
and define sy := e[l — uvcos(p + 0)]. This implies that 6(y, s,) = 6; suppose that

0(p, s0) = 0 as well; this implies in turn that

0
E[1 —uvcos(p+0)] =59 =
w

0
ﬁ[1 —uvcos(p + 7+ 6)],
w

which is impossible if uv # 0.



