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In this document an example is given of a relativistic trajectory space which is not
asymptotically regular but nevertheless St → S∞ for t → ∞, and it is shown that gSt
does not converge to gS∞, where gSt := gPt ◦ ηt|−1gBA

and gS∞(V ) := S∞(g−1V ).
Let us define first the trajectory

kϕ(t) := R(n̂, lnωt)vϕt := vϕ(t)t,

where n̂ = (0, 0, 1), vϕ = v(cosϕ, sinϕ, 0), with 0 < v < 1/
√

2. By continuity we can
define kϕ(0) := 0. For simplicity, in this document all the trajectories will be considered
as defined on R+ instead of R. Note that

vϕ(t) = v(cos(ϕ+ lnωt), sin(ϕ+ lnωt), 0).

The logarithm has been introduced in order to guarantee that kϕ is a world line; in fact
the instantaneous velocity of kϕ is

k̇ϕ(t) = n̂ ∧ vϕ(t) + vϕ(t),

so that
‖k̇ϕ(t)‖2 ≤ 2‖vϕ(t)‖2 < 1.

The trajectory kϕ does not admit asymptotic velocity because ηt(kϕ) = vϕ(t).
Let us consider now the trajectory space composed of the set of trajectories

B := {(kϕ,kϕ+π) : ϕ ∈ [0, 2π)}, (1)

endowed with the measure induced by the normalized Lebesgue measure on [0, 2π). The
support of the measure St is the set

ηt(B) = {
(v cos(ϕ+ lnωt), v sin(ϕ+ lnωt), 0,−v cos(ϕ+ lnωt),−v sin(ϕ+ lnωt), 0) :

: ϕ ∈ [0, 2π)}
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or equivalently

ηt(B) = {(v cosϕ, v sinϕ, 0,−v cosϕ,−v sinϕ, 0) : ϕ ∈ [0, 2π)}. (2)

One can easily see that St is the uniform (Lebesgue) measure concentrated on ηt(B), as
in the example at the end of the section 2 of the paper. The measure St is therefore
independent of time and St → S∞ = St for t → ∞. Of course the support of S∞ is the
set (2); if g is a boost of velocity u < 1 along the x-axis, the support of gS∞ is therefore
the set

gη+(B) =

{(
v cosϕ− u
1− uv cosϕ

,
v sinϕ

γ(1− uv cosϕ)
, 0,
−v cosϕ− u
1 + uv cosϕ

,
−v sinϕ

γ(1 + uv cosϕ)
, 0

)
: ϕ ∈ [0, 2π)

}
.

(3)
We will study now the support of the measure gSt = gP ◦ η+|−1gB , and we will show that,
if the measure converges for t→∞, the support of its limit cannot be (3), and therefore
limt→∞ gSt 6= gS∞.

First of all let us study how does kϕ transform. The graph of kϕ is

kϕ = {(1, v cos(ϕ+ lnωt), v sin(ϕ+ lnωt), 0)t : t > 0},

By defining θ := lnωt we can write

kϕ = {(1, v cos(ϕ+ θ), v sin(ϕ+ θ), 0)eθ/ω : θ ∈ R}.

The transformed graph is:

gkϕ = {(γ[1− uv cos(ϕ+ θ)], γ[v cos(ϕ+ θ)− u], v sin(ϕ+ θ), 0)eθ/ω : θ ∈ R}.

Let

s̃(ϕ, θ) :=
eθγ

ω
[1− uv cos(ϕ+ θ)].

Note that s̃(ϕ, θ)→ 0 for θ → −∞ and s̃(ϕ, θ)→∞ for θ →∞. Note moreover that

s̃(ϕ, θ + 2nπ) = e2nπs̃(ϕ, θ) for n = 1, 2, . . . . (4)

The θ-derivative of s̃(ϕ, θ) is greater than 0:

∂θs̃(ϕ, θ) =
eθγ

ω
[1−uv cos(ϕ+θ)]+

eθγ

ω
uv sin(ϕ+θ) =

eθγ

ω
{1+uv[sin(ϕ+θ)−cos(ϕ+θ)]} > 0

because uv < 1/
√

2 and sin θ−cos θ ≥ −2/
√

2. The function s̃(ϕ, ·) is therefore invertible,
and let θ̃(ϕ, ·) := s̃−1(ϕ, ·); note that θ̃(ϕ, ·) is increasing in the interval (0,∞), with
lims→0 θ̃(ϕ, s) = −∞ and lims→∞ θ̃(ϕ, s) =∞. Moreover, from the equality (4) one easily
deduces the equality

θ̃(ϕ, s) + 2nπ = θ̃(ϕ, se2nπ) for n = 1, 2, . . . . (5)
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that will be utilized later. We can therefore write

gkϕ = {(γ[1−uv cos(ϕ+θ̃(ϕ, s))], γ[v cos(ϕ+θ̃(ϕ, s))−u], v sin(ϕ+θ̃(ϕ, s)), 0)eθ̃(ϕ,s)/ω : s > 0}.

Since, by definition,

s =
eθ̃(ϕ,s)γ

ω
[1− uv cos(ϕ+ θ̃(ϕ, s))],

we can also write

gkϕ =

{(
1,
v cos(ϕ+ θ̃(ϕ, s))− u
1− uv cos(ϕ+ θ̃(ϕ, s))

,
v sin(ϕ+ θ̃(ϕ, s))

γ[1− uv cos(ϕ+ θ̃(ϕ, s))]
, 0

)
s : s > 0

}
,

and therefore the transformed trajectory gkϕ is

gkϕ(s) =

(
v cos(ϕ+ θ̃(ϕ, s))− u
1− uv cos(ϕ+ θ̃(ϕ, s))

,
v sin(ϕ+ θ̃(ϕ, s))

γ[1− uv cos(ϕ+ θ̃(ϕ, s))]
, 0

)
s.

Let us study now the set gB, where B is defined by definition (1). We have:

ηs(gB) =
{( v cos(ϕ+ θ̃(ϕ, s))− u

1− uv cos(ϕ+ θ̃(ϕ, s))
,

v sin(ϕ+ θ̃(ϕ, s))

γ[1− uv cos(ϕ+ θ̃(ϕ, s))]
, 0,

−v cos(ϕ+ θ̃(ϕ+ π, s))− u
1 + uv cos(ϕ+ θ̃(ϕ+ π, s))

,
−v sin(ϕ+ θ̃(ϕ+ π, s))

γ[1 + uv cos(ϕ+ θ̃(ϕ+ π, s))]
, 0
)

: ϕ ∈ [0, 2π)
}
.

Now, suppose that θ̃(ϕ, s0) 6= θ̃(ϕ+ π, s0) for some ϕ and s0; then the set ηs0(gB), which
is the support of gSs0 , is different from the set (3), which is the support of gS∞, and
therefore gSs0 6= gS∞. From the equality (5) one deduces that ηs0(gB) = ηsn(gB) for
n = 1, 2, . . ., where sn := se2nπ. As a consequence if Ss converges for s → ∞ its limit
cannot be gS∞.

In order to prove the thesis, we have still to prove that there exists some ϕ and s0 such
that θ̃(ϕ, s0) 6= θ̃(ϕ+ π, s0). This is trivial: chose ϕ and θ such that ϕ+ θ 6= (2n+ 1)π/2,
and define s0 := γeθ[1 − uv cos(ϕ + θ)]. This implies that θ̃(ϕ, s0) = θ; suppose that
θ̃(ϕ, s0) = θ as well; this implies in turn that

γeθ

ω
[1− uv cos(ϕ+ θ)] = s0 =

γeθ

ω
[1− uv cos(ϕ+ π + θ)],

which is impossible if uv 6= 0.
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